An Online Kernel Learning Algorithm based on Orthogonal Matching Pursuit
نویسندگان
چکیده
Matching pursuit algorithms learn a function that is weighted sum of basis functions, by sequentially appending functions to an initially empty basis, to approximate a target function in the least-squares sense. Experimental result shows that it is an effective method, but the drawbacks are that this algorithm is not appropriate to online learning or estimating the strongly nonlinear functions. In this paper, we present a kind of online kernel learning algorithm based on orthogonal matching pursuit. The orthogonal matching pursuit is employed not only to guide our online learning algorithm to estimate the target function but also to keep control of the sparsity of the solution. And the introduction of “kernel trick” can effective reduce the error when it is used to estimate the nonlinear functions. At last, a kind of nonlinear two-dimensional “sinc” function is used to test our algorithm and the results are compared with the well-known SVMTorch on Support Vectors percent and root mean square error which approve that our online learning algorithm is effective.
منابع مشابه
Kernel Polytope Faces Pursuit
Polytope Faces Pursuit (PFP) is a greedy algorithm that approximates the sparse solutions recovered by 1 regularised least-squares (Lasso) [4,10] in a similar vein to (Orthogonal) Matching Pursuit (OMP) [16]. The algorithm is based on the geometry of the polar polytope where at each step a basis function is chosen by finding the maximal vertex using a path-following method. The algorithmic comp...
متن کاملHierarchical Matching Pursuit for Image Classification: Architecture and Fast Algorithms
Extracting good representations from images is essential for many computer vision tasks. In this paper, we propose hierarchical matching pursuit (HMP), which builds a feature hierarchy layer-by-layer using an efficient matching pursuit encoder. It includes three modules: batch (tree) orthogonal matching pursuit, spatial pyramid max pooling, and contrast normalization. We investigate the archite...
متن کاملDecentralized Online Learning with Kernels
We consider multi-agent stochastic optimization problems over reproducing kernel Hilbert spaces (RKHS). In this setting, a network of interconnected agents aims to learn decision functions, i.e., nonlinear statistical models, that are optimal in terms of a global convex functional that aggregates data across the network, with only access to locally and sequentially observed samples. We propose ...
متن کاملDesign of Non-Linear Discriminative Dictionaries for Image Classification
In recent years there has been growing interest in designing dictionaries for image classification. These methods, however, neglect the fact that data of interest often has non-linear structure. Motivated by the fact that this non-linearity can be handled by the kernel trick, we propose learning of dictionaries in the high-dimensional feature space which are simultaneously reconstructive and di...
متن کاملPMU-Based Matching Pursuit Method for Black-Box Modeling of Synchronous Generator
This paper presents the application of the matching pursuit method to model synchronous generator. This method is useful for online analysis. In the proposed method, the field voltage is considered as input signal, while the terminal voltage and active power of the generator are output signals. Usually, the difference equation with a second degree polynomial structure is used to estimate the co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- JSW
دوره 7 شماره
صفحات -
تاریخ انتشار 2012